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1. Introduction 

The paradigm shift to condition-based maintenance (CBM) of vertical lift aircraft requires 
advanced methods of health and condition monitoring, characterized by high detection rates and 
low false alarms, using recorded signals from sensors placed at key locations throughout the 
aircraft.  Furthermore, not only must the condition monitoring equipment detect any faults, it 
should also determine which component has those faults based upon the physical signature.  A 
key technology enabler is a fast, reliable source of information to compare against real-time or 
near real-time aircraft data.  This capability requires a database of operating conditions, 
simulating both normal and abnormal operations.  Ultimately, it requires a method of modeling 
the dynamics of the system. 

This is particularly relevant in rotorcraft drive trains.  Helicopters rely on the integrity of their 
drive train(s) for their airworthiness and autorotational capability.  Indeed, drive system 
emergencies represent the most critical in-flight emergency, after fire, in many rotary-wing 
platforms.  A study of civilian rotorcraft accidents between 1960 and 1997 concluded that 
transmission malfunctions caused or contributed to approximately 13 accidents per year (1).  
This was most recently reiterated in a recent accident off the coast of Scotland, caused by the 
catastrophic failure of the aircraft’s main rotor gearbox (2). 

Physics-based models are an acknowledged shortcoming in rotorcraft health monitoring and 
diagnostic methodologies (3).  The current state-of-the-art is characterized by an overwhelming 
focus on experimental testing of faults, fault seeding, and detection methodologies using 
vibration signatures and condition indicators (CIs).  The literature groups current research into 
the following loose classifications: (1) stochastic and statistical detection methodologies (4–8), 
(2) empirical testing and  results (9–11), (3) condition indicators, threshold values, algorithms, 
and algorithm effectiveness (12–16), (4) the types of faults (17–25), and (5) vibration signatures 
and signal processing (26–35).  These classifications are not meant to provide rigid divisions in 
the research; indeed, some research crosses into two or more of these classifications. 

The overarching enabler of transmission effectiveness is gear technology.  Drive trains rely on 
gear quality and health for their integrity and function.  The dynamics associated with geared 
motion are complex.  Gears greatly influence the vibration characteristics of a mechanical system 
and contribute significantly to the noise, component fatigue, and personal discomfort prevalent in 
rotorcraft. 

The dynamic analysis of gears dates back to the 1950s.  Models of various gear-mesh 
interactions permeate the literature (36, 37).  By and large, these studies dealt with dual shafts 
coupled by a single gear pair, or multiples shafts coupled by gear pairs using the same types of 
gears, i.e., spur, helical, bevel, etc. 
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What has not been adequately captured, however, is the dynamic modeling of a helicopter or 
gearbox consisting of multiple shafts connected by multiple gears of different configurations.  
With the exception of one study in the late 1980’s (38), work in this area has been relatively 
overlooked.  The complexity of the transmission dynamics and transmission paths has 
traditionally made extraction and interpretation of fault detection data difficult (39).  However, 
interest in physics-based models has increased in recent years, specifically in terms of predicting 
the noise path through a rotorcraft transmission (40). 

This report presents a finite element model of a helicopter transmission in support of health 
monitoring, diagnostics, and other CBM initiatives.  It includes a detailed description of the 
model and system parameters, method of validation, summary of results simulating both normal 
and abnormal operating conditions, and finally, a demonstration of fault detection capability 
using both a conventional and a new diagnostic parameter. 

2. OH-58 Helicopter and Transmission 

The model configuration is based upon the 500 hp Transmission Stand jointly used by the Army 
and NASA at the NASA Glenn Research Center in Cleveland, Ohio.  The OH-58 helicopter is a 
single-engine, light helicopter used for observation and reconnaissance.  More recognizable are 
its civilian counterparts, the Bell 406, which are familiar to most as news and traffic helicopters 
reporting over major metropolitan areas in the United States.  The current transmission mounted 
in the stand belonged to the C-model aircraft.  The stand has also tested the A-model 
transmission (10).  The D-model is the most current platform in use by the Army. 

The OH-58 transmission provides speed and torque reduction through two stages.  The first stage 
consists of a spiral-bevel configuration.  The near-horizontal input shaft holds a 19-tooth spiral-
bevel pinion which drives a 71-tooth spiral-bevel gear on a near-vertical intermediate shaft.  The 
directional change in shaft rotation totals 94 degrees and occurs in this first stage. 

The second stage uses a planetary gear configuration.  The intermediate shaft from the first stage 
also contains a 27-tooth sun gear.  The sun gear drives three or four 35-planet planetary gears, 
depending upon aircraft model.  The planets mesh with a stationary 99-tooth ring gear splined to 
the top of the transmission casing.  The rotating planet gears drive the carrier, which is attached 
to the output shaft.  The output shaft rests within the intermediate shaft.  Various roller and ball 
bearings hold the shafts and planets in place.  The total reduction ratio is 17.44:1.  Figure 1 
depicts the transmission of the A-model aircraft. 
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Figure 1.  OH-58 transmission schematic (left) and disassembled (right). 

3. Transmission Model 

3.1 Description and Model Assembly 

The model uses a lumped parameter, finite element formulation of the familiar equations of 
motion. 

 
   (1) 

The subcomponents of the model consist of the three shafts, the stationary ring gear, and the 
planet gears.  In other words, these five subcomponents have their own matrix elements for 
satisfying equation 1 above (41).  The spiral-bevel pinion, spiral-bevel gear, sun gear, and planet 
carrier are assumed to be point masses acting at the appropriate nodes along their respective 
shaft.  The ring and planet gears also act as point masses at independent nodes not associated 
with any shaft.  The input, intermediate, and output shafts are designated as Shafts A, B, and C, 
respectively. 

Coupling of subcomponents occurs through gear-mesh interactions.  The model interprets these 
interactions as linear stiffness matrices.  While gear loading itself is inherently nonlinear, the 
model maintains the nonlinearities on the right hand side of equation 1 as forcing functions.  
Although a nonlinear model is possible with minor modifications, the linear treatment is 
maintained for ease of analysis. 

Many gear-mesh formulations are available in the literature.  However, the fundamental 
characteristic of the spiral-bevel mesh matrix used here is its twelve degrees-of-freedom (dof’s), 
corresponding to each of the six dof’s at the two coupling nodes.  Although spiral-bevel gear 
geometry and force transfer are some of the most complex in the gearing industry, two 

 
 



 
 

 4 

approaches have been used in this model.  The first uses the method of Tregold’s 
Approximation, modeling the two spiral-bevel gears as equivalent spur gear sets (42).  This 
assumption enables the use of a 12-dof spur and helical gear mesh matrix (43).  The second and 
more accurate approach rigorously develops the mesh matrix based upon vector calculus of the 
gear geometry (44).  Both techniques have been used with comparable results.  The results 
presented here use the more rigorous mesh matrix development. 

The epicyclic stage of the transmission is more complex due to its multiple components and the 
orbital motion of the planets.  For convenience, the system model implements an existing lumped 
parameter epicyclic model from the literature (45, 46).  Each subcomponent is placed at its 
appropriate shaft node in the model as discussed previously. 

Figure 2 presents a comprehensive illustration of the transmission model by subcomponent.  The 
nodes on the three shafts each have the conventional six dof’s.  The nodes of each shaft were 
placed at key locations as dictated by shaft geometries, gear-mesh, and bearing locations.  Shafts 
A and B each have eight nodes.  Shaft C consists of 13 nodes.  The total number of dof’s for the 
shafts is 174.  The epicyclic components each have three dof’s – two in translation and one in 
rotation (torsional).  The ring and planets therefore total 3+3n dof’s, where n is the number of 
planet gears.  The carrier and sun gear also contain three dof’s, which are expanded into the 
traditional 6-dof matrix at their respective nodes.  The total number of dof’s in the model is 
177+3n. 

Some final comments regarding the model setup.  Note that each shaft has a non-uniform cross 
sectional area.  The model assumes an equivalent cross-sectional area for the inner and outer 
diameters of each shaft.  It neglects transmission error within the gear meshes.  Lastly, the 
transmission casing itself is neglected in this analysis.  The system parameters follow in table 1. 
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Figure 2.  Finite element model component layout. 
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Table 1.  Transmission model parameters.  

Material Parameters Shaft A: Input Shaft 
Young’s Modulus (E) (N/m2) 2.05E11 Length (m) 0.150 
Shear Modulus (G) (N/m2) 8.0E10 Outer Diameter (eq) (dso) (m) 0.050 
Poisson’s Ratio () 0.29 Inner Diameter (eq) (dsi) (m) 0.033 
Density () (kg/m3) 7850   

 
Shaft B: Intermediate Shaft Shaft C: Mast Output Shaft 

Length (m) 0.154 Length (m) 0.460 
Outer Diameter (eq) (dso) (m) 0.073 Outer Diameter (eq) (dso) (m) 0.057 
Inner Diameter (eq) (dsi) (m) 0.058 Inner Diameter (eq) (dsi) (m) 0.021 

 
Spiral-Bevel Pinion (Shaft A) Spiral-Bevel Gear (Shaft B) 

Mass (kg) 0.47 Mass (kg) 2.24 
Moment of Inertia (It) (kg m2) 1.4E-4 Moment of Inertia (It) (kg m2) 1.5E-4 
Polar Moment of Inertia (Ip) (kg m2) 2.8E-4 Polar Moment of Inertia (Ip) (kg m2) 3.0E-4 
Diameter (dg) (m) 0.062 Diameter (dg) (m) 0.228 
Pitch Angle (Γ) (deg) 15.3 Pitch Angle (Γ) (deg) 78.7 
Pressure Angle (αn) (deg) 20 Pressure Angle (αn) (deg) 20 
Spiral Angle (ψ) (deg) 30.0 Spiral Angle (ψ) (deg) 30.0 
Orientation Angle (ϕ) (deg) 0.0 Orientation Angle (ϕ) (deg) 0.0 
Average Mesh Stiffness (Kg) (N/m) 1.0E8 Average Mesh Stiffness (Kg) (N/m) 1.0E8 
Number of Teeth 19 Number of Teeth 71 

 
Carrier Sun 

Mass (kg) 5.43 Mass (kg) 0.40 
Moment of Inertia (It) (kg m2) 0.0492 Moment of Inertia (It) (kg m2) 5.841E-4 
Diameter (dg) (m) 0.1768 Diameter (dg) (m) 0.0774 
Pressure Angle (αn) (deg) 20 Pressure Angle (αs) (deg) 24.6 
Bearing Stiffness (kbc) (N/m) 1.0E8 Bearing Stiffness (kbs) (N/m) 1.0E8 
Torsional Bearing Stiffness (kcu) (N-
m/rad) 

100 Torsional Bearing Stiffness (ksu) (N-
m/rad) 

100 

  Number of Teeth 27 
 

Ring Planet 
Mass (kg) 2.35 Number of Planets 4 
Moment of Inertia (It) (kg m2) 0.0567 Mass (kg) 0.66 
Diameter (dg) (m) 0.275 Moment of Inertia (It) (kg m2) 0.0015 
Pressure Angle (αr) (deg) 24.6 Diameter (dg) (m) 0.1003 
Bearing Stiffness (kbr) (N/m) 1.0E15 Pressure Angle (αn) (deg) 20 
Torsional Bearing Stiffness (kru) (N-
m/rad) 

1.0E15 Bearing Stiffness (kbr) (N/m) 1.0E8 

Number of Teeth 99 Number of Teeth 35 
 

Duplex, Triplex, and Roller Bearing   
kxx, kyy (N/m) 1.0E9   

 

3.2 Simulation Setup 

The basic function of the model is to provide a response to a given set of inputs, such that the 
output approximates experimental results.  These inputs represent both normal and abnormal 
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operating conditions.  The inputs are modeled by forcing functions on the right hand side of 
equation 1.  It is here that gear dynamics become readily apparent.  The dynamics of the spiral-
bevel and gear-mesh frequencies and their harmonics dominate the transmission response (10).  
This is most easily illustrated by a data sample from the OH-58 Transmission Test Stand.  The 
test conditions were an input speed of 6060 rpm, torque of 350.1 N-m, and full mast loading.  
Figure 3 depicts the response from an accelerometer near the ring gear at the left trunnion mount.  
The gear-mesh frequency harmonics of both gear stages are identified. 
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Figure 3.  Sample data from OH-58 transmission test stand. 

The data in figure 3 show 22 total gear-mesh harmonics for the OH-58C transmission in the 
spectrum between 0 and 10,000 Hz, clearly illustrating the gear-mesh contributions to the overall 
dynamics of the system.  This significantly contributes to the complexity of the modeling 
problem, since each harmonic represents an individual model input.  This leads to another 
dilemma, specifically, how to determine the amplitudes of the respective forcing functions, since 
no closed form methodology exists.  Similarly, the gear-mesh contributions also result in 
sideband frequencies, which must be addressed as they have also been used to detect fault 
conditions (47). 

In light of these considerations, the force vector of equation 1 must consist of several terms to 
accurately simulate the dynamics of the system.  This may or may not be feasible, and the results 
must be closely scrutinized to determine the sensitivity of the model output to the inputs.  A 
representative simulation equation therefore might resemble equation 2. 

 

  (2) 
 
where the terms on the right hand side represent the torque vector, the spiral-bevel gear-mesh 
harmonics, and the spiral-bevel sideband harmonics, respectively.  The ellipsis in equation 2 
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represents other multiple inputs required to model the system dynamics, such as the planetary 
gear-mesh harmonic contributions. 

4. Model Validation 

Preliminary model validation occurred by using traditional impact testing procedures to identify 
natural frequencies of the four-planet transmission configuration in the ARL/NASA Test Stand.  
Three accelerometers at different locations on the casing recorded the response from successive 
impacts at four different impact locations.  Four impacts occurred at each location, resulting in 
48 test samples.  From this data, the experimental natural frequencies were extracted. 

Figure 4 compares the model’s natural frequencies (x-axis) determined from eigenvalue analysis 
to those frequencies identified from the experimental data (y-axis), and plots them with respect to 
the correlation line.  The correlation line is the 45° dotted line representing an exact 1:1 
comparison.  In figure 4, note the close proximity of all predicted data points to the correlation 
line.  Additionally, figure 4 identifies four bands of unpredicted frequencies.  These represent 
frequencies measured during experimental testing with no corresponding prediction in the model.  
They were highlighted and placed on the correlation line.  The current hypothesis suggests that 
they are frequencies associated with the transmission casing, which the model currently neglects.  
Future incorporation of the casing into the model will prove or disprove this hypothesis.  
Nevertheless, these results provide a significant level of confidence to the model in its current 
configuration. 
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Figure 4.  Experimental versus model frequency. 
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5. Eigen Analysis Results – Mode Shapes 

Initial model analysis solved the eigenvalue problem of the undamped system, accounting for 
gyroscopic effects, using the traditional state-space formulation.  Since gyroscopic effects are a 
function of rotational speed, the nominal speed of the input shaft was set at 6,060 rpm, matching 
the speed of the transmission input from the test environment and the aircraft (10). 

The eigenvalues and eigenvectors represent the system natural frequencies and mode shapes, 
respectively, as a function of shaft operating speed.  Since the frequencies have already been 
addressed, the mode shapes are the objectives of this discussion.  Frequency variation with 
operating speed is not significant in this analysis and is neglected. 

The lateral-torsional vibration coupling that occurs in mode shapes of geared systems has been 
well documented since the 1970s (48).  Epicyclic mode shapes result in a different coupling and 
have also been characterized (45, 46).  Figure 5 depicts the coupled mode shapes of the three 
shafts corresponding to a frequency of 3,230 Hz.  The upper three charts show the lateral 
displacements of (a) Shaft A, (b) Shaft B, and (c) Shaft C.  Likewise the lower three charts show 
the torsional displacement among the three shafts, respectively.  The dotted vertical lines in the 
lower charts correspond to the location of the gear mesh at each shaft.  In the case of Shaft C 
(figure 5.c), the vertical line corresponds to the location where the planet carrier connects to the 
mast output shaft. 
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Figure 5.  Shaft mode shapes –3,230 Hz. 
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Figure 5 illustrates the lateral-torsional mode coupling of the three shafts.  The mode shapes are 
planar, another feature indicative of coupling (43).  Although this study presents only one 
illustrative mode shape, it is worth mentioning that all observed lower mode shapes exhibited 
this same pattern, namely, coupled and planar.  The mode shapes of the ring and planets have 
been omitted for brevity.  However, these results illustrate the need for further study and 
classification of the mode shapes of such a complex system. 

6. Dynamic Simulation Results with Fault Detection 

The dynamic simulations examine two conditions.  The first represents a transmission under 
“normal” operating conditions.  The second condition seeds a fault in the spiral-bevel mesh, 
simulating gear-tooth surface wear.  Wear is a gradual process, characterized by the mild 
deterioration of the mating surface due to sliding action between teeth.  It can accelerate the 
likelihood of fatigue failures (25) and negatively impact other drive system components (24).  
Figure 6 shows a gear experiencing a worn condition. 

Due to its gradual nature, the likelihood of serious damage from worn gears is quite low.  
Nevertheless, this fault was selected because it is one of the most overlooked faults (23), and it is 
also one of the easiest to model for demonstration purposes. 

In the mathematical model, the wear condition is captured by an altered loading pattern within 
the gear-mesh (23).  Such a pattern is presented in figure 7.  The solid line represents a normal 
gear loading pattern.  The dotted line simulates the worn condition.  These loading conditions 
occur at the pitch point in the gear mesh.  One will also note that due to the gradual process, wear 
affects more than one gear tooth simultaneously.  The chart in figure 7 therefore implies that all 
gear teeth have undergone wear. This decreases the model complexity substantially. 

The normal loading pattern of figure 7 is found using a conventional finite element, contact 
analysis solver.  As such, these loading patterns do not exist in closed form.  They must be 
approximated by curve fit.  Afterwards, a transformation procedure converts them into the 
appropriate force vectors. 

The first step in this simulation was to approximate a curve to the loading pattern representing 
normal operation of the spiral bevel gear mesh.  The Fourier series of equation 3 is appropriate. 
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Figure 6.  Gear tooth with wear. 
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Figure 7.  Spiral-bevel gear loading conditions. 
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Equation 3 represents the periodic loading of the gear teeth at harmonics of the spiral-bevel, 
gear-mesh frequency, (n·NTb·Ωb), with the Fourier coefficients as the gear-mesh harmonic 
amplitudes.  The input operating speed of 6,060 rpm (101 Hz) results in 5 gear-mesh harmonics 
between 0 and 10,000 Hz.  The Fourier coefficients are then approximated by the curve-fit 
software.  Table 2 provides the Fourier coefficients for both the normal and damage conditions 
used in figure 7.  Finally, these loading patterns when resolved into two 6-dof force vectors, 
represent the forces and moments acting at the appropriate nodes on Shafts A and B. 

Table 2.  Loading pattern Fourier coefficients. 

 

 

 

 

 

 

The system response was calculated for the force and moment vectors of each harmonic as 
indicated in equation 2.  The superposition of these responses results in the total dynamic 
response.  For this study, the forcing functions include only the force and moment vector of the 
applied torque, and the vectors of the spiral-bevel gear harmonics.  It does not include any gear-
mesh sidebands or planetary gear-mesh contributions.  Figure 8 depicts the lateral response, 
measured at the input node of Shaft A, for both (a) normal and (b) worn conditions. 

The difference in the two vibration patterns is clearly noticeable.  However, the presence of this 
worn condition (figure 8.b) did not produce a drastic change in the vibration pattern.  This is not 
unexpected, given the gradually progressive nature of the fault.  This also indicates that the 
traditional vibration diagnostic parameters may not be effective in detecting this type of fault. 

One such parameter is the signal kurtosis, presented in figure 9.  It is a statistical measure, 
calculated from a sample of accelerometer signals.  A normal signal condition returns a kurtosis 
value of approximately 3.  A fault condition results in a higher value, with a threshold of 7 being 
a clear indicator of damage.  Figure 9 shows the kurtosis value for a string of 2,048 data points.  
The first 1,024 data points have no fault.  The second half of the data points represents the 
introduction of the fault condition.  Figure 9 shows only a slight increase in the kurtosis value.  
Although the increase is detectable, it does not come near the threshold value.  Another method 
of fault detection is necessary for this condition. 

The frequency domain provides such an alternative.  Using the FFT algorithm, the model 
provided both responses in the frequency domain, presented in figure 10.  The differences 

  normal  worn 
n  an bn  an bn 
1  –402 –3.26  –402 –4.25 
2  –49.04 –0.795  –100 –0.7 
3  –2.44 –0.059  –2 –0.02 
4  –15 –5  –9 –6 
5  –10 –3  –15 –8 
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between the two conditions are readily apparent.  Quantifying these differences resulted in the 
development of a simple metric, designated FE2.  In the most basic of terms, the FE2 is the 
square of the percentage error between frequency signals, defined by equation 4.  The square in 
equation 4 increases the detection of faults by eliminating smaller peaks (<1), while magnifying 
larger peaks. 

 
 
  (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  (a) Normal and (b) worn vibration response. 
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Figure 9.  Kurtosis diagnostic parameter results. 
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Figure 10.  Frequency spectrum comparison. 

This utility of this metric is demonstrated in figure 11.  The FE2 was calculated using the FFT 
data points from the two curves in figure 10.  Comparing the FE2 metric of figure 11 with the 
kurtosis parameter of figure 9, FE2 provides a much stronger indication for this particular 
damage condition.  However, this may not always be the case.  Further investigation and 
calibration of the FE2 threshold is required. 
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Figure 11.  FE2 diagnostic parameter. 

7. Additional Considerations 

The worn condition presented here did not seem to indicate a drastic fault condition, which leads 
to a discussion on the different levels of damage.  This implies that some a priori knowledge is 
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required on the differences between light, intermediate, and severe fault levels and how to model 
each of them.  This may not be necessary in more distinct faults such as pitting, spalling, 
cracking, etc., where the defect has a more pronounced signature.  A more severe wear condition 
may produce a more drastic result. 

Another consideration is the ability to determine a standard fault signature for a given condition.  
These signatures will most likely be statistical or “average” patterns, requiring several iterations 
of testing and modeling scenarios to establish, which leads to the third consideration.  The 
damage thresholds of the diagnostic parameters, especially the FE2 parameter, require 
calibration to ensure accuracy. 

Finally, the instrumentation dynamics associated with epicyclic gear vibration must be 
addressed.  An accelerometer attached to the casing near the ring gear measures the vibration of 
the epicyclic gear train.  As each planet passes the accelerometer during a rotation, the sensor 
detects an increase in the vibration level.  Thus, for n planets, a n/rev amplitude modulation is 
produced.  The resulting measured vibration signal is therefore a convolution of the actual 
vibration of the gear set and the modulation caused by the planets moving past the accelerometer.  
The current model does not capture this effect. 

8. Conclusions 

This report has presented the results of a preliminary study into the feasibility of using a physics-
based helicopter transmission model as a method of fault prediction and detection in support of 
CBM initiatives.  Two simulations, one each for normal and damage operating conditions were 
presented using a lumped parameter, finite element model.  The time and frequency domain 
responses were calculated for each and compared.  Damage detection was illustrated using both a 
traditional diagnostic parameter and a new frequency-based parameter, FE2, although several 
iterations of testing and simulation are required to establish new parameter thresholds.  The 
model itself requires further development and testing, to include sensitivity studies, to ensure a 
valid representation of the system dynamics. 

Maturity of this technology will result in increased accuracy and confidence in fault detection 
and diagnosis, characterized by higher detection rates and fewer false alarms.  It can serve as the 
foundation for incorporating transmission models into vibration and health monitoring systems, 
provide predictive capability prior to testing, and provide a useful tool for testing and evaluating 
condition indicator effectiveness. 

From a CBM standpoint, this type of technology can aid in improving operational readiness, cost 
savings, and maintenance downtime. 
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Appendix.  Nomenclature 

an,bn = Fourier coefficients 

b = subscript, spiral-bevel gear pair 

[C] = general damping matrix 

{F(t)} = force and moment vector 

[G] = gyroscopic matrix 

i, j = indices 

j = imaginary component 

[K] = stiffness matrix 

kmesh = mesh stiffness  

[M] = mass matrix 

NT = number of gear teeth 

n = number of planets; nth harmonic 

{q} = generalized displacement vector 

sb = subscript, sideband 

{T} = torque vector 

t = time 

Ω = rotational speed 
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